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A B S T R A C T

Monitoring the effects of water availability on vegetation globally using satellites is important for applications such as
drought early warning, precision agriculture, and food security as well as for more broadly understanding relation-
ships between water and carbon cycles. In this global study, we examine how quickly several satellite-based indicators,
assumed to have relationships with water availability, respond, on timescales of days to weeks, in comparison with
variations in root-zone soil moisture (RZM) that extends to about 1m depth. The satellite indicators considered are the
normalized difference vegetation and infrared indices (NDVI and NDII, respectively) derived from reflectances ob-
tained with moderately wide (20–40nm) spectral bands in the visible and near-infrared (NIR) and evapotranspiration
(ET) estimated from thermal infrared observations and normalized by a reference ET. NDVI is primarily sensitive to
chlorophyll contributions and vegetation structure while NDII may contain additional information on water content in
leaves and canopy. ET includes both the loss of root zone soil water through transpiration (modulated by stomatal
conductance) as well as evaporation from bare soil. We find that variations of these satellite-based drought indicators
on time scales of days to weeks have significant correlations with those of RZM in the same water-limited geographical
locations that are dominated by grasslands, shrublands, and savannas whose root systems are generally contained
within the 1m RZM layer. Normalized ET interannual variations show generally a faster response to water deficits and
enhancements as compared with those of NDVI and NDII, particularly in sparsely vegetated regions.

1. Introduction

Drought monitoring is defined as tracking the severity, spatial ex-
tent, and impacts of drought. Use of that information to elicit an ap-
propriate timely response is called early warning (Hayes et al., 2012).
Drought monitoring and early warning are important components of
proactive, risk-based strategies that are being developed to reduce the
impact of droughts worldwide (Hayes et al., 2012). Early detection of
water stress effects on vegetation is critical for decision making and
drought preparedness in agricultural, ecological, and meteorological
communities (e.g., AghaKouchak et al., 2015). A recent survey of sta-
keholders in the US noted potential benefits of having advanced notice
(on the order of weeks) of worsening conditions that occur during the
transition from meteorological drought (i.e., dry conditions and

reduced precipitation) to agricultural drought (i.e., decreased soil
moisture and impacts on vegetation) (Otkin et al., 2015). Such early
warning could afford 1) ranchers the opportunity to move livestock to
less susceptible pastures or to purchase supplemental feed; 2) farmers
advanced notice to influence their marketing decisions or help them
determine whether a cover crop might be beneficial to plant after
harvest; and 3) government agencies the ability to best allocate
equipment and personnel resources for mitigation, such as emergency
haying (Otkin et al., 2015). In other regions of the world, such as sub-
Saharan Africa, drought early warning systems have been shown to
significantly increase food security and dietary diversity and may also
be used to integrate pasture conservation (Akwango et al., 2017).

A drought indicator (DI) is a variable used to describe the physical
characteristics of drought severity, spatial extent, and duration that
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along with specific trigger values may activate a drought response
(Steinemann and Cavalcanti, 2006). Drought indicators may be related
to hydrology (e.g., precipitation, soil moisture, snowpack), vegetation
status (e.g., type, age, growth stage, and vigor including chlorophyll
content and leaf area index that are related to vegetation indices), or
both (e.g., evapotranspiration or ET). Satellite-based DIs have several
advantages for drought monitoring and early warning, including global
repeat coverage of spatially continuous and consistent spectral mea-
surements and timely data distribution.

Satellite-derived reflectance-based vegetation indices (VI) and other
parameters have been used for vegetation health and drought monitoring
including drought assessment and drought early warning, particularly in
savannas and ecosystems in semiarid regions (see e.g., the review of
AghaKouchak et al., 2015, and references therein). NDVI has also been
used to benchmark modern land-surface models for quantitative predic-
tion of vegetation health (Crow et al., 2012). However, there remain
several challenges in using satellite data for drought monitoring and early
warning (WMO, 2006). For instance, satellite-derived DIs are sometimes
inadequate for detecting early onset and end of drought and should be
integrated with other climate, water, and soil parameters to fully char-
acterize drought impacts and extents.

The use of satellite data for drought monitoring began in the 1980s
with the launch of the Advanced Very High Resolution Radiometer
(AVHRR) instruments on a series of operational meteorological satellites.
The AVHRR contains two spectral bands that can be used to compute the
normalized difference vegetation index (NDVI) (Tucker, 1979). The
NDVI has been utilized in numerous studies involving drought early
warning, agricultural monitoring, and other applications (see e.g., the
review of Anyamba and Tucker, 2012, and references therein). This in-
cludes its use in the US Drought Monitor (USDM) (Svoboda et al., 2002)
in the form of a vegetation health index that is based on anomalies (or
deviations from climatological mean values) of NDVI (Kogan, 1995).

Many studies have also examined relationships among satellite-derived
vegetation indices and variables related to water availability such as pre-
cipitation and soil moisture, sometimes in addition to other climate para-
meters (see e.g., Wang et al., 2007; Méndez-Barroso et al., 2009; Schnur
et al., 2010; Karnieli et al., 2010; Swain et al., 2013; Zeng et al., 2013;
Jamali et al., 2011; De Keersmaecker et al., 2015; AghaKouchak et al., 2015;

Seddon et al., 2016, and references within). The timescales used in these
studies have generally been monthly to yearly and the spatial extents have
ranged from site level to global. Previous examinations of the time differ-
ences (e.g., leads or lags) between the expression of NDVI and responses of
climate variables, such as temperature and water availability, have ranged
from weeks to years (e.g., Braswell et al., 1997; Ahmed et al., 2017). The
lags are sometimes computed using the native NDVI values (e.g., Owe et al.,
1993) or their anomalies (i.e., first removing the average seasonal cycle)
(e.g., Huber et al., 2011) depending on the particular application.

Evapotranspiration (ET) and, along with it, the ET-driven evaporative
stress index (ESI) (Anderson et al., 2007, 2011a, 2013) are more recent
satellite-derived data sets that can be used for early detection of water
stress effects on vegetation as well as drought assessment (e.g., Courault
et al., 2005; Anderson et al., 2007; Kalma et al., 2008; Yao et al., 2010;
Mueller et al., 2011; Jiménez et al., 2011; Anderson et al., 2011a, 2013;
Fisher et al., 2017; Vicente-Serrano et al., in press). ET includes both the
loss of root zone soil water through transpiration (modulated by stomatal
conductance) as well as evaporation from bare soil. This contrasts with
NDVI and similar indices that are sensitive to structural parameters such as
leaf area index (LAI) and/or to canopy chemical constituents such as re-
lative chlorophyll content. Consequently, vegetation indices may have a
delayed response or lower sensitivity to various forms of stress as compared
with ET. ESI, defined as standardized anomalies in a normalized ET
parameter, as well as the related rapid change index (RCI), derived from
the accumulated magnitude of moisture stress changes occurring over
multiple weeks, have been used to identify areas with increases in moisture
stress that may precede rapid drought development or so-called flash
droughts (Otkin et al., 2013, 2014). These products are used by a number
of national and regional drought stakeholders including the USDM.

Many of the studies on the use of satellite-driven ET data sets for
early drought detection and impacts such as on crop yields and terrestrial
water budgets have focused regionally on the United States (e.g., Mishra
et al., 2013; Otkin et al., 2013, 2014; Mladenova et al., 2017; Carter
et al., 2018) and other individual countries (Anderson et al., 2016). Here,
we expand on this work by comparing anomalies (or interannual varia-
tions) at the global scale of 1) a newly developed weekly normalized ET
product from the Atmosphere-Land Exchange Inverse (ALEXI) approach
that is driven by satellite and meteorological data (Hain and Anderson,

Fig. 1. Conceptual diagram showing impacts of different stages of drought on vegetation as expressed by NDVI, transpiration (T), root-zone soil moisture (RZM), and
evaporation (E).
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2017); 2) NDVI and NDII derived from MODIS reflectances; and 3) water
availability as expressed by “root-zone ”(soil) moisture (RZM) in the top
1m layer. Our focus is on the time leads/lags between short-term var-
iations (i.e., daily to weekly timescales) in the RZM and satellite-based
DIs that occur in water limited regions during the transition between
meteorological and agricultural drought as depicted in the conceptual
diagram in Fig. 1. Previous research with space-based observations has
rarely focused on this short timescale. We conduct these comparisons
using weekly averages at the native spatial resolution of a reanalysis RZM
data set (0.5° latitude×0.625° longitude), produced with a data as-
similation system running with an unchanging model and analysis
system using historical data streams; this is the lowest spatial resolution
of the data sets used here. In combination, the prognostic model-based
RZM data and diagnostic satellite-based ET estimates from ALEXI pro-
vide independent yet complementary assessments of the land-surface
moisture status.

One goal of this study is to use the new ALEXI-based ET data set
(Hain and Anderson, 2017) to investigate whether it is possible to
identify regions across the globe where normalized ET shows con-
sistently faster short-term responses (on timescales of days to weeks) to
anomalies in water availability as compared with NDVI or NDII. An-
other goal is to estimate the lead/lag times of these DIs with respect to
each other and RZM over short timescales to determine how useful
satellite-driven global ET-based data sets may be for the above-men-
tioned stakeholder needs.

2. Materials and methods

This section describes the data sets used in this study and how the
interannual variability and time lags are computed. Additional details
regarding the calculation of temporal lags and their associated un-
certainties are provided in Appendix A.

2.1. Satellite drought indicator (DI) data sets

2.1.1. ALEXI-based ET estimates
With surface energy balance methods, estimates of ET are based on

the thermal response of land surfaces containing vegetation as measured
by thermal infrared (TIR) satellite retrievals of land-surface temperatures
(Anderson et al., 2011b). The ALEXI method is a comprehensive set of
algorithms to diagnose the surface energy balance with the aim of re-
trieving ET (Anderson et al., 1997, 2007; Mecikalski et al., 1999). ALEXI
is based on the two-source energy balance (TSEB) approach (Kustas and

Norman, 1999; Norman et al., 1995) in which the partitioning of tur-
bulent fluxes is evaluated for the soil and the canopy (denoted with
subscripts s and c, respectively). This is accomplished by 1) para-
meterizing the divergence of net radiation (Rnet) between canopy and soil
surface and 2) attributing the observed composite surface radiometric
temperature (Trad) into soil and canopy temperatures, Ts and Tc (note:
uppercase T denotes temperature), respectively, based on the fraction of
area covered with vegetation that is parameterized using LAI.

An initial guess for the canopy transpiration rate is based on the as-
sumption that the green part of the canopy transpires at its potential max-
imum rate as estimated with a modified Priestley and Taylor (1972) ap-
proximation. The sensible heat flux for the two source components is then
calculated in a set of equations that accounts for their different resistance to
heat transfer and that satisfy the observation-based Ts and Tc and air tem-
perature Ta (Norman et al., 1995). The final estimate of ET is determined in
an iterative procedure in which soil evaporation is forced to be non-nega-
tive. ALEXI couples TSEB with an atmospheric boundary layer model to
relate the morning rise in Trad to the growth of the overlying planetary
boundary layer and simulate an internally consistent Ta. This removes the
need for Ta as an input data set and limits the sensitivity of the method to
biases in instantaneous satellite-based temperature estimates, while al-
lowing for regional and global implementations of the model (Anderson
et al., 1997). Note that ALEXI does not make use of a soil moisture estimate.

The ALEXI model is run on the 0.05° (∼5 km) Climate Modeling
Grid (CMG) and provides the physical foundation to the ALEXI/
DisALEXI modeling system that has been applied to many satellite-
based thermal infrared (TIR) data streams from 30m to 10 km
(Anderson et al., 2011b). The data set used here is based on a recently
developed global methodology to use twice-daily observations of land
surface temperature from the US National Aeronautics and Space Ad-
ministration (NASA) MODerate-resolution Imaging Spectroradiometer
(MODIS) within the ALEXI framework (Hain and Anderson, 2017).

The data sources for this version of ALEXI are listed in Table 1. They
include the two Terra and Aqua MODIS sensors, the NASA Clouds and
the Earth's Radiant Energy System (CERES), and the National Centers
for Environmental Prediction (NCEP) Climate Forecast System Re-
analysis (CFSR). The continuous 7-day totals are achieved by temporal
interpolation of ALEXI ET retrievals on days with clear sky conditions
by conserving the ratio of ET to daily insolation flux. The use of 7-day
averages allows for filling in of most gaps in satellite coverage caused
by incomplete coverage and cloud contamination. Our analysis method
can determine leads and lags among different drought indicators at a
timescale even finer than 7 days through the use of linear interpolation

Table 1
Primary inputs for current global implementation of ALEXI.

Data Purpose Source Spatial resolution Temporal resolution

Land-surface temperature Trad, Rnet MODIS MYD11C11 0.05° Daily, clear-sky
Surface shortwave and longwave Rnet CFSR2, CFSRv23 0.5° Hourly
radiation fluxes CERES SYN1deg4 1° Daily
Albedo Rnet MODIS MCD43B35 0.05° 16-day
Leaf area index Trad MODIS MCD15A36 0.01° 4-day

partitioning
Landcover type Canopy MODIS MCD12C17 0.01° Fixed

characteristics
Wind speed Aerodynamic CFSR, CFSRv2 0.5° Hourly

resistance
Lapse rate profile Boundary layer CFSR, CFSRv2 0.5° Hourly

growth model

1 Wan and Hulley (2015).
2 Saha et al. (2010).
3 Saha et al. (2011).
4 Doelling (2012).
5 Schaaf et al. (2002).
6 Myneni et al. (2002).
7 Friedl et al. (2010).
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within the 7-day averages (see Appendix A).
In order to remove inter-annual variation in available energy and to

better focus on the drought signal, ET can be normalized by the po-
tential ET (PET) (Anderson et al., 2007, 2011b). PET (or reference ET)
was computed from the general form of the Penman-Monteith equation
for a well defined reference surface (Allen et al., 1998). All necessary
inputs needed for the computation of PET were taken from the same
CFSR data set used in ALEXI. The fraction of potential ET (FPET) is then
simply defined as FPET=ET/PET. Normalization by PET also serves to
approximately rescale values between zero and one. Values above one
do occur and may reflect local biases in PET or localized anomalous ET
behavior.

The FPET data set, with native spatial resolution of FPET (0.05°),
was aggregated to match that of the Modern-Era Retrospective analysis
for Research and Applications 2 (MERRA-2) reanalysis data set de-
scribed below. While this reduces spatial detail, multi-scale analyses of
FPET suggest the generalized signals are not significantly impacted by
aggregation (Yang et al., 2018).

2.1.2. Vegetation Indices
The satellite-derived vegetation indices examined are the NDVI and

the normalized difference infrared index (NDII) that has been used to
estimate equivalent water thickness of leaves and canopy (Yilmaz et al.,
2008). We compute NDVI and NDII using atmospherically-corrected
nadir BRDF-Adjusted Reflectance (NBAR) from the collection 6 Terra
and Aqua MODIS MCD43D daily data set (Schaaf et al., 2002; Lucht
et al., 2000; Schaaf, 2015). Our analysis spans the years 2003–2016
when both Terra and Aqua MODIS data are available. The native re-
solution of the MCD43D gridded data set is 0.0083°× 0.0083°. The
nadir surface reflectance of each gridbox is derived using data acquired
over a 16-day period at multiple angles for clear skies. A daily product
is provided that weights the data according to quality and other factors.
The daily reflectances are then averaged over the same spatial resolu-
tion as the MERRA-2 data set, as was done for ET and aggregated to the
7-day temporal resolution of the FPET data set. Using the averaged
reflectances ρ from bands 1 (620–670 nm), 2 (841–876 nm), and 6
(1628–1652 nm), we compute NDVI= (ρ2− ρ1)/(ρ2+ ρ1) and NDII=
(ρ2− ρ6)/(ρ2+ ρ6).

2.2. Soil moisture

We use fractional root-zone soil moisture (RZM), a dimensionless
quantity, from the MERRA-2 reanalysis data product (Global Modeling
and Assimilation Office (GMAO), 2015; Reichle et al., 2017a,b). The
reanalysis process uses a numerical (weather) prediction model to-
gether with an analysis system to combine many different satellite-,
ground-, and aircraft-based observations in a physically consistent way.
The end product consists of gridded data sets of many variables. These
include some two dimensional fields (i.e., latitude by longitude), like
RZM, that are not directly observed. The choice of a model-based RZM
for this study is driven by the fact that for the time periods considered
here, only models can provide globally comprehensive RZM; there is no
satellite data set that can remotely sense as deeply into the soil and in
situ soil moisture measurements are sparse in coverage. The MERRA-2
RZM represents the moisture in the 0–1m soil layer, independent of the
actual vertical distribution of the plant roots.

In the course of the MERRA-2 integration, the component land
model responds to observations-based meteorological forcing including
gauge-based precipitation from the US National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction Center (CPC),
and it generates estimates of numerous land states, including the RZM
values used here. Reichle et al. (2017b) provide a detailed comparison
of RZM with over 200 in situ measurement sites from several networks
worldwide. The MERRA-2 results were significantly improved as com-
pared with the predecessor MERRA system and generally better than
the European Centre for Medium-Range Weather Forecasts (ECMWF)

ERA-Interim/Land reanalysis data set. The quality of the analyzed RZM
depends strongly on the availability of gauge observations for the land
surface precipitation forcing (Reichle et al., 2017a, see their Fig. 8).

We use the MERRA-2 data at their native spatial resolution of 0.5°
latitude by 0.625° longitude. We refer to each element of the MERRA-2
two dimensional surface RZM field (at a single time step) as a gridbox.
We evaluate all satellite-based DIs at the MERRA-2 gridboxes. The
MERRA-2 RZM data set is the coarsest of the data sets considered here;
therefore the spatial resolution of our study is driven by the MERRA-2
spatial resolution. The hourly MERRA-2 data were aggregated to the 7-
day resolution of the FPET data set.

2.3. Calculation of interannual variations (IAV)

Interannual variations (IAV, also called anomalies) for satellite-
based DIs and RZM at time t (note that lowercase t denotes time) in a
given gridbox are normalized according to the min-max method, i.e.,

=DI (DI DI )/(max(DI) min(DI)),t t t
¯ ¯ ¯

(1)

where denotes that it is an IAV, DIt
¯

is the climatological mean com-
puted by averaging over the 14 years of data at the 7-day time period

corresponding to t, and min(DI)
¯

and max(DI)
¯

refer to the average
minimum and maximum climatological values, respectively, for a given
gridbox. The min-max normalization does not affect the computed
correlations or time lags; it expresses the IAV in terms of a fraction of
the climatological range of values. For example, if the range of observed
values of NDVI for a given gridbox is 0.5, then a positive anomaly of
0.25 will produce a (normalized) IAV of 0.25/0.5=0.5. The min-max
normalization provides an alternative way to compare IAV values for
various types of measurements that have different measurement/mod-
eling errors as compared with the more commonly used standardized
IAV or z-score in which native IAV values are divided by the standard
deviation (Raschka, 2014). With z-scores, the standardized IAV would
be effectively decreased for noisy measurements. Instead, for con-
venience we normalize the size of the IAV with respect to the range of
observed values. This is also preferable to analyzing the IAV in native
units which would tend to put less weight on smaller values that occur
in regions with smaller ranges of observed values. Here, negative or
decreasing IAV values of DIs tend to be associated with the effects of
water or other types of stress. In other words, negative values are ob-
tained when the indicator is lower than its mean value at a particular
time of year, and decreasing IAV values mean that the DI values are
decreasing with respect to their normal or mean values over time. To
reduce the effects of random noise that impacts our analysis, we apply a
six point boxcar smoothing filter to the IAV time series.

2.4. Calculation of time lags

To compute the lag (Δt) between two different DI , DI1 and DI2, (for
a given gridbox) we model DI t1, as the sum of a time shifted and scaled
function of DI t2, and a residual term ϵ, i.e.,

= +ADI DI ,t t t1, 2, (2)

where Δt is the lag (in 7-day samples) of DI2 with respect to DI1. We
solve for values of a scaling factor A, and offset ϵ, and Δt using a
standard unconstrained non-linear (iterative) least-squares fitting ap-
proach (see Appendix A for details).

We restrict our analysis to regions with a substantial fraction of chlor-
ophyll containing vegetation by using data only from 7-day time periods
with a climatological mean NDVI >0.15. We also remove time periods for
which reanalysis surface temperature averages were≤ 0°C. Finally, we only
use gridboxes with ≥70 data points over the 14-year period.

When displaying correlations and leads/lags between the various DI's,
we focus on gridboxes having significant correlations after applying the
fitting procedure (p-value < 0.00001). The choice of a higher p-value
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threshold, as may be expected, yields a number of gridboxes, that while
meeting the p-value criteria, appear isolated and display relatively low
correlations or precision. The choice of a very small p-value threshold
eliminates most of these apparently spurious gridboxes while retaining
those with higher correlations in the expected sensitive regions.

2.5. Processing and sampling of the satellite and soil moisture fields

The satellite and soil moisture data sets are each averaged temporally
and/or spatially in such a way as to put them all on similar scales. Fig. 2
shows an example of the data sets at different stages of processing at one
location that will be used later (see Fig. 5, the “x” within box 1 for the
mapped location). In this figure, the time series of NDVI′, FPET′, and
RZM′ are shown first at the native spatial resolution at the point closest
to the listed latitude and longitude at the native 7-day temporal resolu-
tion of the FPET data set (denoted with “−0 ”), then aggregated to the
native 0.5°× 0.625° spatial resolution of the RZM data set(denoted with
“−1 ”), and finally with temporal smoothing applied (denoted with “−2
”). It is apparent that both FPET′ and RZM′ contain higher frequency
structure as compared with NDVI′. The spatial averaging applied to
NDVI′ and FPET′ does not appear to substantially alter the IAV values at
this predominantly grassland location. The temporal smoothing, as ex-
pected, removes the high frequency structures in FPET′ and RZM′ which
makes drought signals (prolonged negative anomalies), such as the Texas
drought of 2011, more obvious and more similar to NDVI′.

It should be noted that there are sampling differences between the
analyzed soil moisture and satellite data products considered here. These
differences in sampling may lead to both random and systematic differ-
ences among the various data sets and can contribute to uncertainties in
our analyses. For example, MERRA-2 data are averaged over all-sky
conditions. In contrast, vegetation indices are averaged only over clear
days. The FPET data are time composites of clear-sky values, to focus the
signal on soil moisture controls of ET rather than insolation controls.

There are also time of day sampling differences. MERRA-2 data are
averaged over all hours of the day and night. FPET is representative of
mid-day conditions. The vegetation indices use both late morning and
early afternoon data.

3. Results and discussion

Fig. 3 shows maps of mean FPET, NDVI, NDII, and RZM (left
column, a–d) and corresponding standard deviations of the IAV (right

column, e–h) computed over the active growing season. All DIs show
similar spatial patterns of means with generally higher values in
forested regions such as the eastern US and northern Eurasia and lower
values in semi-arid areas such as the western US, central and western
Australia, northeast Brazil, southeast Argentina, and southern Africa as
well as the horn of Africa and the Sahel. FPET is relatively lower in
tropical rainforest regions (Amazon, tropical Africa, Indonesia) than
other variables owing to few clear-sky samples during rainy season
when all-sky FPET is high. The NDVI and NDII patterns for their mean
values are the most similar to each other, of the four shown.

The standard deviations of the IAV show areas where there are sig-
nificant IAV values and also may give some indication of measurement
noise and other errors. There are similar spatial patterns in the standard
deviations of all DI′, with high values in semi-arid regions, particularly
central Australia, Texas and northern Mexico, and southern Africa. The
standard deviations of the DI′ values (as for the original mean DI values)
are most similar for the NDVI′ and NDII′. However, there are also some
differences. For example, higher standard deviations are shown for FPET′
as compared with the vegetation indices over tropical rain forest areas
(Amazonia, central Africa, and the tropical Pacific). Relative to the VI′,
FPET′ in these areas may be affected more by cloud contamination. In
addition, there may also be some residual cloud contamination in the VI
data. Cloud contamination should affect the NDVI more than the NDII
since the band reflectance differences for NDVI are larger. This is con-
sistent with the higher standard deviations of IAV seen for NDVI as
compared with NDII in cloudy areas such as Amazonia.

Fig. 4 shows mapped correlations between each DI′ and RZM′ and with
respect to each other obtained during our fitting procedure (Eq. (2)) for all
gridboxes (left) and only for those with p-values < 0.00001 (right). All
satellite-based DI′s generally show similar correlations with respect to RZM′.
NDVI′ generally displays the highest correlations with respect to RZM′
(panel b), but this only occurs in specific areas. In some areas, particularly
the boreal forest areas at high northern latitudes (above 40°N) and parts of
western Europe, FPET′ shows somewhat larger extents of areas significantly
correlated with RZM′ as compared with the other satellite-based DI′. This
indicates that FPET′ has higher sensitivity to water stress in these regions,
although the correlations are in the moderate range, generally below 0.5.

In heavily forested regions such as Amazonia and other tropical rain
forests and less drought-prone areas such as the NE US, there is less varia-
bility in the IAV values due to temporal stability of the vegetation itself.
Therefore, the IAV values in these areas are likely dominated by measure-
ment error (i.e., noise and cloud contamination). This results in mostly

Fig. 2. Example of how the satellite and soil moisture
anomaly data sets are processed; satellite data aggregated to
the 7 day native period of the FPET data set at native spatial
resolutions are denoted with “−0”; the data sets at 7 day
temporal resolution at the native spatial resolution of the
0.5°× 0.625° RZM data set are denoted with “−1”; data sets
with subsequent temporal smoothing applied are denoted
with “−2”.

J. Joiner et al. Remote Sensing of Environment 219 (2018) 339–352

343



insignificant correlations of the satellite-based DI′s with respect to RZM′. An
examination of fitting residuals (see Appendix B) provides additional insight
into measurement errors. The correlations of FPET′ with respect to NDVI′
(panels d and i) show similar spatial patterns as with respect to RZM′
(panels a and f). Similar correlations have been shown at monthly time-
scales and for different months (Vicente-Serrano et al., in press) and em-
pirical relationships between NDVI and ET have also been reported (Yao
et al., 2010). NDVI′ and NDII′ are found to be highly correlated (panels e
and j); they share a common reflectance band (NIR band 2) and so will have
correlated measurement errors. However, the impact of cloud contamina-
tion will differ for NDVI and NDII with a larger expected effect on NDVI.
This may explain the lower correlations in tropical regions that are fre-
quently cloud covered. Appendix C provides additional statistical analyses
and a summary of the correlations between the DI′s.

Fig. 5 shows vegetation types within eight large boxes that display high
correlations between satellite-based DI′ and RZM′. The vegetation types are
from the MODIS MCD12C1 2010 yearly land cover product gridded at
0.05°× 0.05° (Friedl et al., 2010). Table 2 lists the corresponding percen-
tages of different vegetation types within these eight water-sensitive regions.
These regions are dominated by grasslands, shrublands, and savannas that
tend to have relatively shallow roots that lie within the top 1m soil layer of
the MERRA-2 RZM estimates. Vegetation systems with deeper roots, such as
rain forests, may be able to extract water from deeper layers where moisture
can be decoupled from the MERRA-2 RZM.

The areas with significant correlations between the satellite-based DI′
and RZM′ (and also between FPET′ and VI′) are similar to those found to
have high correlations between NDVI and cumulative precipitation IAV

(Zeng et al., 2013; Koster et al., 2014). These same areas were also found
to have a significant drought resistance coefficient derived from NDVI at
a bimonthly timescale (De Keersmaecker et al., 2015). It has been sug-
gested that these regions play a major role in carbon cycle variability,
particularly in the southern hemisphere (Poulter et al., 2014; Ahlström
et al., 2015; Ma et al., 2016; Zhang et al., 2016).

Fig. 6 shows time series of smoothed IAV for several individual
gridboxes from Fig. 5 (marked as an ‘x’ within the black boxes). From
Fig. 6 it is immediately apparent that all satellite DI′ vary similarly in
time, with timescales similar to those of RZM′. Well-known features,
such as the 2011 Texas drought in box 1 (Sun et al., 2015; Wang et al.,
2016) and 2010 Russian drought in box 6 (Yoshida et al., 2015) are
shown as distinctly negative values in all DI′. Small time shifts of the
order of a week to two weeks (i.e., 1–2 samples) between these different
drought indicators are not readily apparent.

Fig. 7 shows computed time lags (Δt) and their estimated 2σ un-
certainties for the same pairs of variables as in Fig. 4. These un-
certainties are generally considered to be lower limits as explained in
Appendix A. The lags of FPET′ with respect to RZM′ are generally
smaller (∼zero to a few weeks negative) than those of NDVI′ and NDII′.
This means that FPET′ has a somewhat faster response to dry conditions
than NDVI′ and NDII′. This is consistent with the results of Otkin et al.
(2016) who showed that decreases in the ET-driven ESI anomalies (or
IAV) preceded observed changes in crop conditions by up to one month
during the 2012 US flash drought.

The lags can take on negative values when IAV in the first parameter
precedes that of the second variable. Fig. 7a shows some substantially

Fig. 3. Left: means computed over the active growing season for a) FPET, (b) NDVI, (c) NDII, and (d) fractional “root-zone” soil moisture (RZM, in the top 1m layer)
from MERRA-2 (all quantities are dimensionless); Right: corresponding standard deviation of their weekly IAV (panels e–h). White areas with no data correspond to
large deserts such as the Sahara, Arabian, and Gobi deserts.
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Fig. 4. Maps of Pearson's correlation coefficient (r) between weekly satellite-based DI′ and RZM′ after fitting with Eq. (2); the first variable listed is the fitted
parameter (fit by a scaled and shifted version of the second variable): a) FPET′ fitted using RZM′; b) NDVI′ fitted using RZM′; c) NDII′ fitted using RZM′. d) FPET′
fitted using NDVI′; and e) NDII′ fitted using NDVI′. Left: all gridboxes with valid data; Right (f–j): only for gridboxes with p-values < 0.00001 (all other gridboxes
with valid data shown in gray).

Fig. 5. Vegetation types within water sensitive regions. The ‘x’ markers within each box denote locations for which time series will be further examined in detail
below in Fig. 6.
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negative values of Δt for FPET′ with respect to RZM′, for example on the
Iberian Peninsula(meaning that FPET′ precedes RZM′). While this may
seem counterintuitive at first, there are plausible explanations. In areas
with sparse vegetation, ET is more sensitive to surface soil moisture
through its direct connection to soil evaporation (E) and soil surface
temperature. In these areas, reductions in FPET are more strongly tied
to reductions in near-surface moisture than to reductions in moisture
throughout the top 1m (the “root zone” depth in the MERRA-2 system).
An extended precipitation deficit will dry the top several centimeters of

soil first (with concomitant impacts on FPET), while the full top meter
of soil will take longer to dry. Similarly, a subsequent rainy period will
allow near-surface moisture (and thus FPET) to recover more quickly
than the full root zone. The net effect could be a negative time lag of
FPET′ with respect to RZM′.

In fully vegetated areas, ET is dominated by vegetation transpiration (T),
which is sensitive to the IAV in RZM through its link to vegetation water
content, transpiration, and stomatal closure. For areas where transpiration is
high and a negative time lagmay occur between FPET′ and RZM′, such as in
the southeastern US, negative lags could result if the MERRA-2 model un-
derestimates the rate of depletion of soil water through ET or drainage.
These areas generally have low correlations and high uncertainties in the
computed lags owing to smaller IAV values and also fewer satellite land
surface temperature retrievals in these frequently cloudy regions.

NDVI′ and NDII′ generally respond within about a week relative to
RZM′ for most sensitive areas. We do not detect many significant leads or
lags between NDVI′ and NDII′ (see Fig. 7e). The faster response, in gen-
eral, of FPET′ as compared to the other satellite-based DI′ likely reflects
surface processes (including soil evaporation and canopy interception)
whose decline does not necessarily indicate long-term drought conditions.

The correlations and lags for NDVI′ with respect to RZM′ are gen-
erally consistent with those that have been found in more detailed
studies at individual sites (e.g., Wang et al., 2007; Méndez-Barroso
et al., 2009; Schnur et al., 2010; Swain et al., 2013; Jamali et al., 2011).
For example, NDVI lags were found to vary with soil moisture at dif-
ferent depths ranging from a few days to several weeks (Jamali et al.,
2011) and also varied with plant type (Swain et al., 2013). It should be
noted that lags may vary with climatic or land-use changes (Ahmed

Table 2
Percentages of different vegetation types within large boxes shown in Fig. 5.
Shrublands include both open and closed shrublands; Savannas include woody
savannas; Forests include evergreen broadleaf and needleleaf, deciduous
broadleaf and needleleaf, mixed forests, and grass + mixed forests; Other in-
cludes water, urban, snow/ice, barren/sparsely vegetated, and wetlands. The
last line (“all”) shows averages over the gridboxes within all the large boxes
(i.e., not area-weighted).

Box # Grasslands Shrublands Savannas Croplands Forests Other

1 35.6 25.8 13.2 8.5 12.1 4.7
2 17.9 31.3 9.7 20.0 16.3 4.9
3 0.3 0.6 80.5 0.7 11.4 6.5
4 9.0 33.6 48.7 1.7 1.7 5.3
5 20.2 24.9 25.9 7.9 13.4 7.7
6 73.9 0.9 0.2 16.1 6.4 2.5
7 77.0 1.1 0.3 8.1 8.0 5.5
8 7.7 50.3 16.6 11.8 6.2 7.4
All 32.9 20.8 22.3 9.5 9.0 5.5

Fig. 6. Time series of smoothed RZM′ (black) and DI′, the latter being offset (as indicated by the horizontal lines that indicate the zero level) for clarity with different
colors as noted in the legend. Pearson's correlation coefficients (r) with respect to RZM′ prior to the fitting are listed on the top right in the associated colors. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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et al., 2017) and that our approach derives a single lag value based on
the wide range of conditions occurring over more than a decade.

4. Conclusions

Comparing global responses of FPET, NDVI, NDII, and RZM inter-
annual variations, we show that they all feature the same basic spatial
and temporal variability with respect to water stress in sensitive areas.
These sensitive areas are dominated by grasslands, shrublands, and
savannas. These vegetation types tend to have root systems contained
within the 1m defined root zone of the MERRA-2 RZM fields.
Vegetation with deeper root systems, falling outside the top 1m layer of
the MERRA-2 root zone, such as trees within tropical rain forests, may
be able to access water from deeper layers that can be decoupled from
the MERRA-2 RZM. This effect, along with frequent cloud contamina-
tion of satellite retrievals in the same areas, may explain the low cor-
relations between satellite drought indicators and RZM interannual
variations in tropical regions. In moderately to highly vegetated areas
of high northern latitudes such as in western Europe and North
America, FPET′ shows larger areas with significant correlations with
respect to RZM′ than NDVI′ or NDII′. Although the correlations in these
areas are somewhat reduced (<∼ 0.5) as compared with more sensi-
tive areas that correspond with semi-arid regimes (grasslands,

shrublands, and savannas), our analysis indicates that FPET′ has higher
sensitivity to water stress in these higher latitude regions.

FPET′ frequently leads RZM′ as well as NDVI′ and NDII′ in water
sensitive regions by days, and by up to a week or more. The VI interannual
variations typically lag those of RZM by days to a week or more. One
explanation is that the bare soil evaporation component of FPET is a sig-
nificant driver of interannual variations in these areas. Soil evaporation
responds more quickly to soil conditions near the surface (top few cm) as
compared with soil moisture throughout the top 1 m of the soil.
Interannual variations in FPET′ therefore may show a rapid response to
mild water stress, while NDVI′ and NDII′ respond primarily to more severe
conditions throughout the root zone during a longer-term drought. This
effect would tend to occur in more sparsely vegetated areas which is where
FPET′ most frequently leads RZM′, NDVI′, and NDII′. In more fully ve-
getated areas, where correlations are generally lower, transpiration dom-
inates over evaporation. In these areas, such as the eastern US and eastern
China, negative lags of FPET′ interannual variations with respect to those
of other indicators may result if the MERRA-2 model underestimates the
rate of depletion of soil water through ET or drainage.

Our study suggests that the FPET and VI anomalies contain com-
plementary information. While many drought-related parameters are
produced on a monthly basis, these satellite data sets may also be useful
at daily to weekly timescales. VI data, when processed carefully to

Fig. 7. Left: Time lags (Δt, in days) between various drought indicators, where positive values indicate the lag of the first variable listed with respect to the second a)
FPET′ and RZM′, b) NDVI′ and RZM′, c) NDII′ and RZM′; d) FPET′ and NDVI′; e) NDII′ and NDVI′; Right: Estimated 2σ uncertainty in lags computed with linear
assumption for same parameter pairs.
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remove the effects of sun-satellite geometry and clouds, provide rela-
tively clean time series that show impacts of water availability changes
in sensitive regions on timescales of the order of days to weeks. FPET
anomalies, while somewhat more variable on daily timescales, may
provide earlier detection of drought impacts as compared with VI
anomalies owing to its sensitivity to changes in near-surface soil
moisture that affects sparsely vegetated regions and stomatal con-
ductance that plays more of a role in heavily vegetated area.

FPET, NDVI, and NDII can all be obtained at management level
spatial resolutions (e.g., 1 km×1 km or better) and with revisit times
of the order of days with current satellites in low Earth orbit. In addi-
tion, NDVI can be derived at the field level (∼30m) with Landsat and
Sentinel 2 that when combined is available at approximately weekly
timescales. While our analyses were conducted at the scale of the global
RZM data set, the approach of using IAV can be applied at the higher
spatial resolution of the currently available satellite data sets. While
both vegetation indices and FPET are currently used in the USDM, we
have identified several regions of the world where these data may be
useful in similar approaches.

We expect improvements in all data sets used here in the future,
both in terms of data quality as well as spatial resolution. Reanalysis
soil moisture will improve in the future as the input and assimilated
data quality improves, for example through the addition of satellite-
based rainfall estimates from the joint NASA and Japanese Aerospace
Exploration Agency (JAXA) Global Precipitation Mission (GPM) and
assimilation of radiometer observations from the NASA Soil Moisture
Active Passive (SMAP) mission and the European Soil Moisture Ocean
Salinity (SMOS) mission. We also expect higher spatial resolution in
future reanalysis data sets.

Our approach of using IAV to estimate leads/lags between different
satellite indicators is least effective in heavily vegetated areas owing in
part to deeper root zones (deeper than 1m) and less interannual
variability in general. These aspects present inherent limitations of the
method in more heavily vegetated areas. Particularly in the tropical
rain forests, there is little interannual variability in the satellite in-
dicators and there are larger observational errors due to cloud con-
tamination. With respect to the cloud contamination issue, several next-
generation geostationary Earth orbit (GEO) instruments including the
Advanced Baseline Imager (ABI) may improve the data quality of the
vegetation indices and FPET by increasing the number of potential
observations with more frequent opportunities to see between clouds.
Utilization of cloud tolerant microwave observations may improve the
consistency and revisit time of sampling underpinning the ET retrieval.
It also has the potential to reduce the noise, especially in areas with
frequent cloud cover (Holmes et al., 2018). The ECOsystem Spaceborne
Thermal Radiometer Experiment on (the international) Space Station
(ECOSTRESS) since July 2018, is expected to provide the ESI for
1–2 years at a field level spatial resolution of tens of meters.
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Appendix A. Details regarding the calculations of time lags

To compute the lag Δt between DI1 and DI2 according to Eq. (2), we solve for a state vector x consisting of A, ϵ, and Δt using an unconstrained
non-linear least-squares approach, e.g., Rodgers (1990), i.e.,

=x H S H H S y y( ) ( ),i i
T

y i i
T

y i
1 1 1

obs calc, (A.1)

where the subscript i denotes the iteration, H is the Jacobian matrix or linearized observation operator (∂ y/∂ x), superscript T denotes transpose, Sy

is the observation error covariance, yobs is the time series of DI1 (DI t1, ) and ycalc is a vector of values computed using the forward model (Eq. (2)). In
this formulation, Δt may take on non-integer values (i.e., fractions of the 7 day sampling interval); The shifted time series of DI2 (DI t t2, ) in Eq. (2) is
calculated using linear interpolation. Hi is computed by finite differences (Eq. (2)), i.e., linearized about the current state estimate, using a Δt interval
of 1 sample (7 days). The first guess for A and ϵ is computed using a linear (non-iterative) unconstrained least squares approach (Eqs. (2) and (A.1))
with Δt=0. The retrieved Δt in samples can be converted to units of days by multiplication with 7 days/sample.

In Eq. (A.1), we assume that Sy is a diagonal matrix I( )y
2 , implying uncorrelated and constant errors for all observations. With these assumptions

the Sy terms then cancel in Eq. (A.1) so that the state vector solution does not depend on the assumed measurement error variance. However, the
measurement error variance is needed to estimate the retrieval error covariance. At convergence, the error covariance for x, Sx, is computed using

= =S H S H H H( ) ( )x
T

y y
T1 1 2 1 (A.2)

following Rodgers (1990). Here, we use the standard deviation of the residuals (yobs −ycalc) at convergence as an estimate of σy.
We tested the approach with a Monte Carlo simulation and found that it worked very well for the case of random noise applied to DI t1, but noise

free DI t2, . However, this standard linear error propagation technique may underestimate uncertainties when noise is added to DI t2, , because that
noise is propagated into the Jacobian calculation and is not taken into account within the standard linear error estimation. A similar condition can
occur if there are systematic differences between the two time series applied, i.e., when the model in Eq. (2) is imperfect. The Jacobian error may also
produce a bias in the retrieval. To mitigate these issues, we always use the less noisy parameter for DI2,t. In addition, we apply a six point box car
smoothing to all time series. This nearly eliminated the bias and underestimation of errors within the Monte Carlo simulator. However, with real data
and imperfections in the assumed model, we must consider the error estimates as lower limits as they will tend to underestimate errors. In addition,
intercomparison of lead/lags computed between different pairs of variables may not provide a perfect closure owing again to imperfections in the
assumed models as well as nonlinearities.

We also found that in some cases, outliers (e.g., that may be present owing to undetected clouds for vegetation indices) can drive the fitting and
produce unreliable shifts. We therefore undertook several measures to remove outliers as follows: 1) We compute standard deviations (σ) of DI t1, and
DI t2, (DI2 not time shifted) and assign a large error (i.e., resulting in a negligible weight, referred to as de-weighting) to any points with absolute
values> 3.5σ; 2) We similarly de-weight any points where the absolute values of both DI t1, and DI t2, are> 2σ and DI t1, and DI t2, are of opposite sign;
3) To avoid extrapolation error, we de-weight the first and last points of a time series; 4) To avoid interpolation error, we de-weight any points that
are adjacent to the points that are filtered out by checks (1) –(3) or missing data; 5) We de-weight any points with absolute values of residuals> 3σy;
6) We de-weight any point for which the adjacent value of the IAV changes by more 4σ (continuity check).

J. Joiner et al. Remote Sensing of Environment 219 (2018) 339–352

348



Appendix B. Fitting residuals

One way to assess the errors in the various DI measurements is to examine the fitting residuals (yobs −ycalc) using Eq. (2) for different pairs of DI′.
Fig. B.8 shows maps of the standard deviations of the fitting residuals. The units of the residuals are the fraction of the climatological range. In other
words, a value of 0.3 means that the standard deviation of the fit is 30% of the range of climatological values observed during the growing season. In
the ideal case, a perfect match exists between the noisy DI′ after accounting for a phase shift. Then, the standard deviation of the residual would be
equal to the square root of the summed error variances of each DI′ used in Eq. (2). However, if there is an imperfect match between the DI′, then the
residual will be increased. Note that the residuals are shown after quality control has been applied.

Fig. B.8. Standard deviations of the fitting residuals for different pairs of gridded drought indicators using Eq. (2); the first variable listed is the fitted parameter (fit
by a scaled and shifted version of the second variable): a) FPET′ fitted using RZM′; b) NDVI′ fitted using RZM′; c) NDII′ fitted using RZM′; d) FPET′ fitted using NDVI′;
e)NDII′ fitted using NDVI′.
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It is difficult to separate the effects of pure measurement error from model error in Eq. (2). Comparing the residuals computed with different pairs
of DI′ and with the standard deviations of the interannual variations (IAV) may provide some clues. In places where residuals are not significantly
reduced compared with the original standard deviations, this indicates measurement error and/or inability to fit one variable effectively with respect
to another. For example, larger residuals are observed over Texas and northern Mexico as compared with surrounding regions for all DI′s. However,
the residuals are reduced as compared with the standard deviations of the IAV indicating that there are significant yet imperfect relationships
between the DI′ in this area.

In general, the fitting residuals are smallest for NDVI′ and NDII′ with respect to RZM′ and each other. NDVI and NDII benefit from relatively wide
reflectance bands (e.g., 20 nm) with much higher SNR and larger signals.

The residuals involving FPET′ show large values over tropical rain forests where the range of the climatology (used for normalization) is small
owing to limited seasonal variation. In these regions, known to be particularly cloudy, the effects of cloud contamination may be significant in
comparison with the climatological range. A small climatological range may also explain the relatively high values of residuals in parts of sparsely
vegetated Australia. At high northern latitudes where there is substantial seasonal variation during the growing season and in general small IAV
values, the VI residuals are fairly small (standard deviations <∼ 0.2). Values are somewhat higher for FPET′ as compared with NDVI′ and NDII′.

Appendix C. Further analyses of correlations between DI′s

Fig. C.9 shows histograms of the correlations between the different satellite-based DI′ and RZM′. Table 3 summarizes statistics related to those
distributions (means and standard deviations). It is apparent that FPET′ is better correlated with RZM′ than with NDVI′ indicating that it has a better
relationship with water availability than vegetation structure.

Fig. C.9. Histograms of correlations between different satellite-based DI′ (left: satellite-based DI′ with RZM′; right: satellite-based DI′ with each other).

Table 3
Number of points meeting p-value criteria, means, modes, and standard deviations (σ) of the distributions of correlations between different pairs of
DI′.

1st DI′ 2nd DI′ # points Mean Mode σ

FPET′ RZM′ 20,520 0.49 0.40 0.17
NDVI′ RZM′ 13,432 0.53 0.52 0.20
NDII′ RZM′ 18,104 0.50 0.36 0.18
FPET′ NDVI′ 11,613 0.47 0.28 0.20
NDII′ NDVI′ 14,165 0.72 0.92 0.23
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